
Asian Journal of Information Science and Technology
ISSN: 2231-6108 (P); 3049-2661 (E)
Vol.15 No.1, 2025, pp.44-53

 © Centre for Research and Innovation
 www.crijournals.org

 DOI: https://doi.org/10.70112/ajist-2025.15.1.4332

Mitigation of Web Vulnerabilities Arising from Directory Brute-Forcing
and Exposed Development Artifact: A Qualitative Study

Aminu Muhammad Auwal
Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria

E-mail: i.elameenu@gmail.com
(Received 13 January 2024; Revised 27 February 2025; Accepted 15 March 2025; Available online 21 March 2025)

Abstract - Web applications increasingly face threats not only
from sophisticated exploits but also from basic oversights such
as misconfigured directories and exposed development
artifacts. This study explores the awareness and mitigation
strategies of developers, Dev Ops engineers, and system
administrators regarding vulnerabilities arising from directory
brute-forcing and the exposure of sensitive files such as .git/,
.env, and .bash_history. Using a qualitative approach, data
were collected through semi-structured interviews with 11 IT
professionals across different sectors in Nigeria, where the rise
of small- and medium-scale web deployments has amplified the
security stakes. Findings reveal a concerning inconsistency in
mitigation strategies, even among technically proficient
participants. While some employ directory restrictions and
CI/CD security checks, others rely on ad hoc, manual
practices. Most participants were aware of the risks posed by
exposed artifacts, yet only a few incorporated automated tools
or vulnerability scanners into their deployment pipelines.
Notably, a gap persists between theoretical knowledge and
operational execution, leaving systems vulnerable to
reconnaissance and chained attacks. This study highlights the
need for stronger Dev Sec Ops integration, improved
developer hygiene practices, and automated security
enforcement within web deployment workflows. The results
underscore a critical call to action for organizations and
individual professionals to revisit their deployment pipelines
and invest in proactive security measures that go beyond basic
configuration.
Keywords: Web Application Security, Dev Sec Ops, Directory
Brute-Forcing, Deployment Pipelines, Vulnerability Mitigation

I. INTRODUCTION

Web application vulnerabilities continue to pose significant
threats to organizational cybersecurity, with attackers
increasingly targeting overlooked or misconfigured
elements of server infrastructure. Among these, the
exposure of sensitive directories and residual artifacts-such
as .git folders, .bash_history, and CI/CD configuration files-
presents an under-addressed yet critical vector for
exploitation (e.g., [1], [2]).

These files often exist outside standard navigation paths and
may return HTTP 403 or 401 errors without fully restricting
access. When discovered via directory brute-forcing or sub
domain enumeration, they can leak information about
internal systems, credentials, deployment logic, or even
source code history [3]. Automated tools such as Go buster
and FFUF have made the discovery of such exposures

trivial for even moderately skilled attackers [4].As
organizations accelerate Dev Ops practices and frequent
deployments, the risk of exposing temporary or legacy files
increases, particularly when security reviews lag behind
development cycles. Studies show that many Dev Ops
pipelines lack adequate safeguards against publishing
sensitive build or deployment artifacts [5]. Despite
increased awareness in the cybersecurity community, there
remains limited research on the operational awareness and
mitigation strategies adopted by administrators, developers,
and Dev Ops engineers in relation to directory and artifact
exposure. This study investigates this gap through
qualitative analysis, aiming to uncover the behavioral,
procedural, and tooling inconsistencies that leave web
infrastructure vulnerable to such probing.

II. LITERATURE REVIEW

A. Understanding Web Application Vulnerabilities and
Attack Vectors

Web applications have become indispensable in modern
society, facilitating everything from e-commerce to critical
infrastructure management. However, this ubiquity also
makes them prime targets for malicious actors. A
foundational understanding of web application
vulnerabilities is crucial for developing robust security
postures. The Open Web Application Security Project
(OWASP) Top 10 consistently highlights prevalent risks,
including injection flaws, broken authentication, and
insecure deserialization, each posing significant threats to
data confidentiality, integrity, and availability [6], [7].

A common initial phase for attackers is reconnaissance,
where they gather information about a target system to
identify potential weaknesses. This often involves mapping
the application’s structure, discovering hidden paths, and
enumerating accessible resources. Effective reconnaissance
can lead to more focused attacks, making early detection
and mitigation of information exposure a critical component
of secure web application design [6], [8].

B. Directory Brute-Forcing and Enumeration

Directory brute-forcing and enumeration are potent
reconnaissance techniques used by attackers to discover

44AJIST Vol.15 No.1 January-June 2025

__
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

hidden directories, files, and resources on a web server that
are not typically linked or publicly advertised. Tools such as
Gobuster, Dirb, and Feroxbuster automate this process,
systematically guessing common directory and file names to
identify accessible endpoints [9], [10]. The goal is to
uncover sensitive information, administrative interfaces,
backup files, or misconfigured resources that can lead to
further exploitation [11].

The impact of successful enumeration can be severe.
Discovering an unlinked administrative panel, for instance,
could lead to unauthorized access if default credentials are
in use or if authentication bypass vulnerabilities exist.
Similarly, finding old backup files or configuration files can
expose sensitive data, internal network structures, or even
credentials that attackers can leverage for privilege
escalation or lateral movement within a network [9], [10],
[12]. The evolution of these techniques has paralleled the
growth of web applications, making them a persistent threat
that requires proactive mitigation [9], [10], [13].

C. Exposure of Sensitive Developer Artifacts and
Misconfigurations

A particularly insidious aspect of web vulnerability stems
from the unintentional exposure of sensitive development
artifacts and misconfigurations. These exposures often
occur due to oversight, misconfigured web servers, or
inadequate deployment practices, leaving critical internal
information accessible to the public internet. Common
examples include .git repositories, .env files containing
environment variables and credentials, .bash_history files
(which can reveal commands executed on a server), docker-
compose.yml files (detailing container configurations),
backup files, and uncompiled source code [14].

The risk is profound: source code disclosure can reveal
proprietary logic and vulnerabilities, while exposed
credentials or configuration files can grant direct access to
databases, APIs, or internal systems. The causes of such
exposures are multifaceted, frequently stemming from a
lack of proper .gitignore usage in development workflows,
incorrect web server configurations (e.g., enabling directory
listing in Apache or Nginx), flawed deployment scripts that
fail to sanitize assets, or simply pushing development-
specific files to production environments. Real-world
incidents have repeatedly demonstrated that these seemingly
minor oversights can lead to significant data breaches and
system compromises [15]. While technical means to prevent
these exposures exist, the persistent occurrence of such
vulnerabilities highlights a deeper problem related to human
practices and the implementation of security controls in the
development and operations lifecycle [16].

D. Human Factors, Awareness, and Dev Sec Ops Practices

Despite advancements in security technologies, human
factors remain a primary contributor to cybersecurity
incidents. Studies consistently indicate that errors, lack of

awareness, insufficient training, and poor adherence to
security policies by individuals directly involved in software
development and deployment play a significant role in
introducing and perpetuating vulnerabilities [17], [18]. This
underscores the importance of understanding the human
element in preventing issues like artifact exposure.

Research on developer and operations awareness often
reveals disparities in understanding and prioritizing security.
While some developers may possess strong secure coding
knowledge, they might overlook deployment-specific risks
or the implications of certain configurations. The rise of
DevOps has introduced methodologies aimed at
accelerating software delivery through increased
collaboration and automation. However, this acceleration
can inadvertently bypass security checks if not explicitly
integrated [19], [20].

This has led to the emergence of Dev Sec Ops, a paradigm
that advocates “shifting security left”-integrating security
considerations throughout the entire software development
lifecycle, from design and coding to testing and
deployment. Effective DevSecOps relies on automated
security testing, continuous monitoring, and fostering a
culture where security is a shared responsibility rather than
an afterthought [21]. Training and educational initiatives are
pivotal in enhancing the security posture of development
and operations teams, aiming to in still a proactive security
mindset and mitigate human-induced vulnerabilities.

E. Gaps in Current Research

Existing literature offers a robust technical understanding of
web application vulnerabilities, including the mechanics of
directory brute-forcing and the types of sensitive artifacts
that can be exposed. There is also a growing body of work
on Dev Sec Ops principles and the importance of human
factors in cybersecurity [22]-[25].

However, a significant gap exists in qualitative research that
delves deeply into the perceptions, awareness levels, and
practical mitigation strategies employed by the specific
individuals directly involved in web development and
deployment-namely, Dev Ops engineers, system
administrators, and web developers-regarding the specific
risks of directory brute-forcing and the exposure of
development artifacts.

While some studies touch on general security awareness,
few provide in-depth, firsthand accounts of the challenges,
blind spots, and decision-making processes faced by
practitioners in their day-to-day operations that contribute to
these vulnerabilities.

This qualitative study aims to bridge this gap by offering
rich, nuanced insights into the human and practical
dimensions of preventing hidden resource exposure, thereby
complementing existing technical and theoretical literature.

45 AJIST Vol.15 No.1 January-June 2025

Mitigation of Web Vulnerabilities Arising from Directory Brute-Forcing and Exposed Development Artifact: A Qualitative Study

III. METHODOLOGY

A. Research Design

This study adopted a qualitative research design with an
exploratory orientation. The nature of the research question-
focusing on human awareness, behavioral patterns, and
operational practices-demanded a design that could provide
deep, interpretive insight rather than surface-level
quantification. Qualitative exploration is particularly well-
suited for uncovering not just what is being done, but how
and why it is done, especially in contexts where existing
literature is sparse or fragmented, aligning with Braun and
Clarke’s framework [26].

The decision to employ this approach was influenced by the
complexity of web vulnerability management, especially
where technical knowledge intersects with organizational
culture, deployment workflows, and personal responsibility.
Rather than surveying hundreds of professionals for
statistically measurable trends, the intent was to zoom in on
a smaller, more focused sample of practitioners and
understand their thinking, assumptions, and practices in
real-world settings.

This design allowed the researcher to gather rich
descriptions of how developers, DevOps engineers, and
system administrators perceive risks related to directory
brute-forcing and the exposure of sensitive artifacts-such as
.git directories, shell history files, and environment
configurations. Through natural conversations and semi-
structured dialogue, it became possible to reveal gaps
between assumed security practices and actual behavior, as
well as the rationale behind certain decisions (or omissions)
that might leave systems vulnerable.

B. Sampling Strategy

The sampling approach for this study was deliberately
purposive, as defined by Jacques and Wright [27], driven by
the need to engage participants with real, hands-on
experience in deploying, managing, or securing web
applications. The goal was not to generalize findings to a
wide population but rather to engage with individuals who
could offer meaningful, experience-based insights into the
research questions-particularly around artifact exposure and
directory brute-forcing.

A total of eleven participants were recruited, all of whom
were professionals based in Nigeria and actively engaged in
various areas of software development, systems
administration, and Dev Ops. Some worked in formal
institutions such as universities and corporate organizations,
while others operated in freelance or start-up environments.
This diversity of backgrounds added a useful layer of
contrast to the data, highlighting differences in tooling,
security culture, resource availability, and awareness levels.

Recruitment was done informally, leveraging personal and
professional networks, LinkedIn, and developer community
forums. Given the niche focus of the topic, participants were
approached based on their visible engagement with web
technologies or security-related discussions. A brief
screening was conducted to ensure they had at least one
year of experience working with live web deployments and
were familiar with server-side configurations and CI/CD
processes.

While eleven may appear numerically small, it was
sufficient for this qualitative inquiry. The sample size was
adequate to reach thematic saturation, where recurring ideas
and concerns began to emerge across interviews-allowing
the researcher to identify not just individual stories but also
patterns of thought and practice across the group. Each
participant brought a unique perspective, yet several shared
overlapping experiences, especially regarding overlooked
security gaps and why those gaps persist despite growing
awareness of threats.

C. Data Collection

Data for this study were collected through semi-structured
interviews, a method chosen for its flexibility and depth.
This approach allowed for guided yet open-ended
conversations, where participants could speak freely about
their experiences, while the researcher could probe deeper
when interesting or unexpected insights emerged. The semi-
structured format also ensured that core topics-such as
awareness of directory brute-forcing, practices around
artifact management, and the use of mitigation tools-were
consistently addressed across interviews.

Interviews were conducted over a span of two weeks, using
virtual platforms such as Google Meet, Telegram Voice,
and WhatsApp Calls, depending on participants’
preferences and internet accessibility. This virtual mode of
data collection was practical given geographical spread and
time constraints, and it aligned well with the participants’
tech-savvy nature and digital workflows. Each interview
lasted between 30 and 45 minutes and was conducted in
English.

Prior to each interview, participants were given a brief
overview of the study’s aims and reassured about
confidentiality. With verbal consent, interviews were audio-
recorded to ensure accuracy in later transcription and
analysis. During the interviews, questions moved from
general topics-such as participants’ roles and experiences in
deployment-to specific questions about web-based
vulnerabilities, directory brute-forcing, artifact exposure,
and how (or whether) these issues were addressed in their
environments.

Although interviews followed a guide, the researcher
intentionally allowed space for participants to explore areas
they considered important. In several instances, participants
volunteered stories of incidents they had witnessed or

46AJIST Vol.15 No.1 January-June 2025

Aminu Muhammad Auwal

handled, including security oversights that led to near-
breaches or internal red flags. These accounts added
authenticity and narrative depth, revealing not only
technical but also emotional and ethical dimensions that
practitioners navigate.

D. Ethical Considerations

While this study did not pass through a formal university
ethics board, every effort was made to ensure it met
acceptable standards of research integrity and ethical
responsibility. Given the sensitivity of the topic-touching on
potential security lapses and personal or organizational
practices-it was crucial to approach each participant with
clarity, discretion, and respect.

Participants were fully informed, prior to the start of each
interview, about the purpose of the study, the kinds of
questions that would be asked, and the intended use of their
responses. It was emphasized that the study was academic
in nature and not an audit or security assessment. They were
assured that no part of their responses would be linked to
their names, organizations, or specific projects in any
published form. To protect identities, all personal identifiers
were removed during transcription, and participants were
assigned generic labels such as “Participant A,” “Participant
B,” and so on.

Voluntary participation was a cornerstone of the process.
Each individual was asked to give verbal consent before
recording began and was reminded that they could skip any
question or withdraw from the interview at any point-
without any need to explain. Fortunately, all eleven
participants completed their interviews without withdrawal.

Additionally, care was taken to avoid questions that might
place participants in legally or professionally compromising
situations. When discussions touched on sensitive details-
such as server misconfigurations, data exposure, or
inadequate practices-the researcher steered the conversation
toward generalized reflection rather than specifics. The
intention was never to expose flaws but to understand
broader patterns, knowledge gaps, and practical constraints
shaping behavior in real-world technical environments.

This ethical grounding enabled participants to speak
candidly, knowing their insights were valued not as
vulnerabilities to be judged but as experiences to be learned
from. The confidentiality measures also supported academic
rigor and personal trust-a balance essential when
researching topics at the intersection of technology,
accountability, and risk.

E. Data Analysis

The data analysis process followed a thematic analysis
approach, which is commonly used in qualitative research to
identify, interpret, and report patterns within textual data.
After completing all eleven interviews, each audio

recording was transcribed verbatim to preserve the richness
of participants’ expression, tone, and phrasing. Transcripts
were then read and reread to ensure familiarity with the
content before formal coding began. Initial coding was
carried out manually using a hybrid approach: inductive
codes emerged directly from the data, while deductive codes
were informed by the research questions and existing
literature on web vulnerabilities. For instance, inductive
themes such as “false sense of security,” “tool fatigue,” and
“legacy artifact neglect” surfaced naturally, whereas
deductive themes like “awareness levels,” “mitigation
practices,” and “tool usage patterns” ensured alignment with
the study’s focus.

Once the preliminary codes were developed, they were
grouped into broader themes that captured recurring ideas
across participants. For example, the theme “Inconsistent
Mitigation Strategies” encompassed responses highlighting
how different teams or individuals applied patches, updated
configurations, or managed sensitive directories based on
convenience rather than formal policies. Similarly, the
theme “Tooling Gaps and Over-reliance” reflected patterns
where participants either misused popular tools, failed to
configure them fully, or assumed that security was entirely
handled by automation pipelines.

Themes were then compared across participants’ roles and
organizational contexts (e.g., DevOps engineers vs. front-
end developers; start-up teams vs. larger institutions). This
comparative lens helped reveal how factors like team size,
workload, or organizational support shaped whether
vulnerabilities were addressed or overlooked.

Throughout the analysis, care was taken not to force data
into predefined narratives. Where contradictions or
anomalies appeared-such as a participant expressing high
awareness of security risks but admitting to minimal
practice-they were preserved and treated as meaningful
signals rather than errors. These contradictions often
revealed tensions between theory and practice, and between
intention and execution, providing some of the study’s most
valuable insights.

IV. FINDINGS OF THE STUDY

A. Inconsistent Mitigation Practices

One of the most prominent themes was the inconsistency in
how security mitigation strategies were applied across teams
and environments. While participants generally agreed on
the importance of securing production systems, their
approaches differed widely-often influenced by time
constraints, lack of formal policy, or reliance on ad hoc
routines.

For instance, several participants admitted to relying heavily
on their frameworks or Dev Ops pipelines to “handle most
of it,” while others practiced manual cleanup and validation.
However, when asked whether they validated .git folders or

47 AJIST Vol.15 No.1 January-June 2025

Mitigation of Web Vulnerabilities Arising from Directory Brute-Forcing and Exposed Development Artifact: A Qualitative Study

shell artifacts post-deployment, only 3 out of 11 reported
doing this consistently.

“Honestly, it depends on the day. If we’re rushing a release,
security checks are sometimes skipped. Not proud of it, but
it happens.”- Participant C (Dev Ops Engineer, Fin tech)

Another participant from a smaller start up noted:

“We use Docker a lot, and I thought the containers isolated
things enough. But during testing, we found an old
.bash_history that somehow got bundled in a volume. It was
embarrassing.”
- Participant G (Backend Developer, Start-up)

TABLE I OBSERVED VARIANTS IN MITIGATION BEHAVIOR
Mitigation Approach Number of Participants Notes

Consistent and documented 2 Mainly from regulated sectors (e.g.,
finance)

Ad hoc/manual 5 Often based on personal discipline rather
than policy

Automated via pipeline, but
unchecked 3 Belief in “done by CI/CD” without audit

No dedicated strategy 1 Admitted full reliance on default server
settings

These responses illustrate a crucial disconnect: although
participants were technically aware of the dangers, many
lacked structured, repeatable procedures to mitigate them.
This inconsistency introduces opportunities for
exploitation-particularly by attackers using automated tools
to brute-force or enumerate hidden paths. Participants also
expressed concern that their practices might not scale well
or remain secure as system complexity grows.

B. Awareness of Artifact Exposure

A second major theme centered on participants’ level of
awareness regarding the exposure of sensitive artifacts-
particularly version control directories (e.g., .git, .svn), shell
history files (e.g., .bash_history, .zsh_history), and
environment configuration files (e.g., .env, .profile). While
most participants acknowledged the theoretical risk of
leaving such files accessible on public-facing servers, actual
awareness of their presence in production environments
varied significantly. Several respondents expressed surprise
when examples were mentioned, particularly regarding. git

folders being indexed by search engines or accidentally
bundled in deployments:

“Wait, git folders can be accessed from the browser if not
restricted? I thought the server would just ignore that.” -
Participant D (Frontend Developer, mid-size company)

Only 4 out of 11 participants reported engaging in proactive
behaviors, such as scanning their deployments for lingering
development files or configuring .htaccess or Nginx rules to
explicitly block access to these resources.
One DevOps engineer reflected:

“It’s easy to forget about things like .env or .bashrc. They’re
just there on your local, but in shared hosting or Docker
images, they creep in. We learned the hard way when
someone pulled secrets from an old .env file once.”
-Participant H (DevOps Engineer, SaaS company)

Despite the clear security implications, the level of formal
training or on boarding content addressing this issue
appeared minimal.

TABLE II SUMMARY OF AWARENESS LEVELS

Artifact Type Participants
Aware of Risk

Participants Who
Scan or Prevent

.git directories 9/11 4/11
.bash_history 6/11 3/11

.env, .profile 7/11 3/11
Shell

aliases/config 4/11 1/11

This table illustrates a troubling gap between theoretical
awareness and applied preventive action. Some participants
assumed their hosting provider or CI/CD tool “took care of
that,” indicating an underlying overconfidence in default

configurations. Overall, the data suggest that although
professionals are aware of these risks, they do not routinely
audit their systems to address them-particularly in fast-
paced environments.

48AJIST Vol.15 No.1 January-June 2025

Aminu Muhammad Auwal

Fig. 1 Word Cloud Highlighting Key Terms and Themes from Participant Responses on Artifact Exposure and Security Awareness

C. Over-Reliance on Tools and Automation

Another recurring theme was the over-reliance on
automated tools, CI/CD pipelines, and frameworks for
security enforcement-often without proper validation or
manual review. While automation is essential for scalability
and efficiency, many participants revealed that their teams
rarely audited the outputs or configurations of these tools,
assuming that security tasks were being fully handled in the
background. This faith in automation was particularly
evident among mid-level developers and teams using
modern Dev Ops stacks, such as Docker, GitHub Actions,
and cloud-native deployment pipelines. However, few had
configured these systems to explicitly detect or block
common exposures, such as .git folders or shell artifacts.

“We use GitHub Actions and Docker for everything.
I thought the linter or the Dockerfile setup would catch
anything dangerous, but it turns out, unless you specifically

exclude those files, they go through.” - Participant A (Dev
Ops Engineer, e-commerce firm) In one notable case, a
participant described an instance where an internal build
script-assumed to be secure-pushed a zipped directory
containing both the application and its hidden. git history to
a public subdomain:

“We only realized it when someone posted the link in a bug
bounty forum. The automation just zipped and deployed
everything in the repo.”

-Participant I (Backend Developer, media startup)

The data indicate that while tools can enforce some best
practices, they often lack the contextual understanding or
human-level scrutiny needed to identify nuanced
vulnerabilities. For example, a .git folder might not trigger a
security warning unless a specific rule or plugin is
configured to detect it.

TABLE III TOOL USAGE AND ASSUMPTIONS TABLE

Automation Tool Used Assumed Secure by
Default

Custom
Security Config

Applied

Manual Review
Practiced

Git Hub Actions 8/11 2/11 3/11
Docker (for packaging) 9/11 4/11 2/11
Web Framework
(e.g. Laravel, Django) 6/11 1/11 2/11

From this, it is clear that many participants trusted the
default configurations too much, expecting them to cover all
aspects of deployment security. The lack of awareness
regarding the boundaries of these tools’ responsibilities led
to blind spots, particularly in handling legacy files and
invisible metadata. In essence, automation was treated not
as an assistant to security hygiene but as its replacement.

D. Cultural and Communication Gaps Between Roles

Beyond technical issues, a notable theme was the disconnect
in communication and security culture among
administrators, developers, and DevOps engineers.
Participants frequently highlighted that security

responsibilities were often unclear or unevenly distributed,
leading to gaps in coverage and accountability.

Several participants mentioned that security knowledge
tended to be siloed-developers might understand the code
risks but were less aware of infrastructure exposures, while
system administrators focused on network-level controls
and patching, leaving file-level risks overlooked.

“We don’t always talk enough between teams. Sometimes, I
only hear about a security issue after it’s too late. The
DevOps folks think we handle the servers, but we don’t
check for hidden folders in deployments.”
-Participant F (System Administrator, financial services)

49 AJIST Vol.15 No.1 January-June 2025

Mitigation of Web Vulnerabilities Arising from Directory Brute-Forcing and Exposed Development Artifact: A Qualitative Study

“It’s a bit of a blame game sometimes. Developers say
admins should lock down directories, admins say
developers shouldn’t commit secret files. Without a clear
owner, these things slip through.” - Participant B (Senior
Developer, SaaS). This cultural gap was compounded by the

lack of formalized training or cross-functional security
policies. Although many participants expressed interest in
improving awareness and practices, organizational inertia
and resource constraints posed challenges.

TABLE IV SUMMARY: COMMUNICATION AND ROLE CLARITY

Issue Frequency (Participants
Mentioning)

Lack of clear ownership for
artifact security 8/11

Insufficient cross-team
communication 7/11

Desire for more security training
& policies 9/11

Participants generally agreed that improved collaboration
and clearer role definitions could reduce many of the
operational security gaps related to exposed artifacts and
brute-force vulnerabilities.

V. DISCUSSION

A. Technical Awareness and Practice Gaps

A key finding was the inconsistency between awareness and
actual mitigation practices. While nearly all participants
recognized that artifacts like .git directories pose security
risks, only a minority actively scanned for or remediated
these vulnerabilities. This gap between knowledge and
action echoes findings from prior research (e.g., [28]-[30]),
which observed that security knowledge does not always
translate into consistent practice, particularly in fast-paced
development environments.

The presence of hidden files, such as .bash_history and
environment configuration files, in production systems
further highlights operational oversights. Such files can
expose sensitive command histories or credentials, serving
as valuable reconnaissance targets for attackers conducting
brute-force or lateral movement attacks. The sporadic
attention paid to these files suggests a lack of
comprehensive deployment hygiene protocols and risk
assessments.

B. Over-Reliance on Automation Tools

Participants reported significant reliance on automated
tools-CI/CD pipelines, linters, and deployment scripts-to
manage security configurations. However, this reliance was
often misplaced; many admitted that default configurations
failed to exclude dangerous artifacts, and manual auditing
was rare. This aligns with existing literature warning that
automation, while powerful, cannot replace expert oversight
(e.g., [31]-[33]).

This over-trust in tools without sufficient customization or
verification can lead to false security assumptions. For

example, tools may not flag. git directories unless explicitly
configured to do so. Similarly, automated scans might
overlook transient or legacy files if scanning rules are not
continuously updated. Therefore, security automation
should be viewed as a complement to-rather than a
substitute for-human expertise and routine audits.

C. Organizational Culture and Communication Barriers

A notable barrier identified in the study was the lack of
clear ownership regarding artifact security. Participants
described scenarios in which developers, administrators,
and Dev Ops engineers operated in silos, often assuming
someone else was responsible for securing hidden or
sensitive files.

This ambiguity led to gaps in accountability, with no single
role consistently taking responsibility for checking or
removing exposed artifacts. As a result, critical
vulnerabilities often slipped into production unnoticed,
despite good intentions and general awareness. This finding
supports the growing recognition in the literature that
security cannot be effectively maintained in fragmented
environments. As noted in [34] and [35], embedding
security as a shared responsibility across development,
operations, and security teams is essential to reducing
oversight. Organizational structures that promote cross-
functional collaboration-such as joint deployment checklists
or integrated review meetings-have been shown to enhance
security readiness and ensure responsibilities are clearly
communicated.

Moreover, many participants expressed a desire for more
structured security training but cited competing work
priorities and a lack of organizational support as barriers.
While motivation existed, the absence of role-specific
security programs and scheduled learning sessions
prevented deeper engagement.

This is consistent with studies (e.g., [36], [37]) that
emphasize the importance of continuous, tailored training to
improve security literacy and operational outcomes across
development teams.

50AJIST Vol.15 No.1 January-June 2025

Aminu Muhammad Auwal

D. Practical Implications for Stakeholders

For developers, the findings highlight the importance of
incorporating artifact hygiene into the software
development lifecycle, including explicit exclusions in
.gitignore and deployment scripts. Developers should be
encouraged to routinely audit their repositories for sensitive
files and be trained to understand the security implications
of legacy artifacts (e.g., [38], [39]).

For DevOps engineers, the study points to the need for
rigorously configuring CI/CD pipelines and containerization
workflows to detect and prevent unintended artifact
deployment. Automated tools should be regularly updated
and supplemented with manual inspection, especially in
complex build environments.

For system administrators and security teams, the results
suggest adopting systematic scanning of production
environments for exposed directories and files, coupled with
swift remediation protocols. Establishing monitoring and
alerting mechanisms around unusual directory access can
provide early warnings of brute-force or enumeration
attempts.

At the organizational level, fostering a culture of shared
security responsibility-supported by clear policies and
communication channels-is essential to closing the gaps
identified.

E. Limitations and Scope

While this qualitative study provided rich insights, several
limitations must be acknowledged. The sample size of 11
participants, while adequate for exploratory research, limits
generalizability. Participants were primarily from small to
medium enterprises and start-ups, which may differ in
security maturity from larger organizations. Geographic and
industry diversity was also limited, potentially biasing
perspectives.

Additionally, the study relied on self-reported data, which
can introduce social desirability bias, as participants might
overstate their security awareness or practices. Future
research should consider larger, more diverse samples and
employ mixed methods (combining qualitative interviews
with quantitative vulnerability assessments) to validate and
extend these findings.

F. Future Research Directions

Building on this work, further studies could investigate the
effectiveness of specific training programs tailored to
artifact security or evaluate new automated tools designed
to detect and block sensitive artifact exposure. Research into
organizational change strategies that enhance cross-team
communication and ownership of security responsibilities
could also yield valuable insights.

VI. CONCLUSION

This study examined the awareness and mitigation strategies
employed by web administrators, developers, and DevOps
engineers in addressing the risks associated with directory
brute-forcing and the exposure of sensitive artifacts, such as
.git folders and shell history files. Through qualitative
interviews with 11 professionals, the research uncovered
notable inconsistencies in security practices, a heavy
reliance on automation tools without sufficient manual
oversight, and significant communication and cultural gaps
within organizations.

The findings reveal that, despite general awareness of these
risks, operationalizing effective mitigation remains a
challenge. Artifact exposures persist due to unclear role
ownership, incomplete training, and overconfidence in
automated processes. These vulnerabilities present a real
attack surface that adversaries can exploit, especially when
combined with other attack vectors. Addressing these issues
requires a comprehensive approach that combines technical
controls with organizational change. Clear delineation of
security responsibilities, ongoing education tailored to
different roles, and integration of manual audits with
automated tooling are essential steps toward improving
security hygiene.

This research contributes to understanding operational
security challenges in modern web environments and
highlights a critical gap between what is technically
possible and what is routinely secured. It encourages
organizations to prioritize artifact security as part of their
broader cybersecurity strategy and calls for further research
into effective interventions. By bridging the disconnect
between awareness and practice, organizations can
significantly reduce their vulnerability to brute-force attacks
and artifact exposure, thereby enhancing their overall
security posture.

VII. RECOMMENDATIONS

This study highlights the urgent need for improved
operational security practices among administrators and
DevOps teams. Regular configuration audits and the
integration of secure defaults in deployment pipelines
should be prioritized to prevent the exposure of sensitive
directories and artifacts, such as .git folders and
.bash_history files.

Organizations are encouraged to adopt lightweight,
automated scanning tools within development and staging
environments to proactively detect and alert on such
exposures. Alongside tooling, targeted training programs
can address the evident gaps in awareness and inconsistent
mitigation practices identified in this study. Ultimately,
fostering a security culture built on the principle of least
exposure-treating all files and directories as potentially
public until proven otherwise-will help teams minimize
attack surfaces and improve their overall defensive posture.

51 AJIST Vol.15 No.1 January-June 2025

Mitigation of Web Vulnerabilities Arising from Directory Brute-Forcing and Exposed Development Artifact: A Qualitative Study

Declaration of Conflicting Interests
The authors declare no potential conflicts of interest with respect to the
research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship,
and/or publication of this article.

Use of Artificial Intelligence (AI)-Assisted Technology for Manuscript
Preparation
The authors confirm that no AI-assisted technologies were used in the
preparation or writing of the manuscript, and no images were altered using
AI.

REFERENCES

[1] Bach-Nutman, M. (2020). Understanding the top 10 OWASP

vulnerabilities. arXiv. https://doi.org/10.48550/arxiv.2012.09960
[2] Ezenwoye, O., & Liu, Y. (2022). Web application weakness

ontology based on vulnerability data. arXiv.
https://doi.org/10.48550/arxiv.2209.08067

[3] Cheah, C. S., & Selvarajah, V. (2021). A review of common web
application breaching techniques (SQLI, XSS, CSRF). Atlantis
Highlights in Computer Sciences.
https://doi.org/10.2991/ahis.k.210913.068

[4] Suguna, N. (2014). Hunting pernicious attacks in web applications
with XProber. American Journal of Applied Sciences, 11(7), 1164-
1171. https://doi.org/10.3844/ajassp.2014.1164.1171

[5] Zhang, B., Li, J., Ren, J., & Huang, G. (2021). Efficiency and
effectiveness of web application vulnerability detection
approaches: A review. ACM Computing Surveys, 54.
https://doi.org/10.1145/3474553

[6] Singh, N., Gupta, P., Singh, V., & Ranjan, R. (2021). Attacks on
vulnerable web applications. In 2021 International Conference on
Intelligent Technologies (CONIT) (pp. 1-5).
https://doi.org/10.1109/CONIT51480.2021.9498396

[7] Dommeti, D., & Voola, P. (2023). Identifying and mitigating
common web application vulnerabilities. South Asian Journal of
Engineering and Technology. https://doi.org/10.26524/sajet.
2023.13.9

[8] Kalim, A., Jha, C., Singh, D., Tomar, D., & Tomar, D. (2020). A
framework for web application vulnerability detection.
International Journal of Engineering and Advanced Technology.
https://doi.org/10.35940/ijeat.c4778.029320

[9] Farras, N., Loderick, J., Saputri, H., & Sari, A. (2024). Exploring
penetration testing: A comparative analysis of brute force directory
tools in vulnerability analysis phase. In 2024 2nd International
Conference on Technology Innovation and Its Applications
(ICTIIA) (pp. 1-6). https://doi.org/10.1109/ICTIIA61827.2024.
10761451

[10] Antonelli, D., Cascella, R., Schiano, A., Perrone, G., & Romano,
S. P. (2024). ‘Dirclustering’: A semantic clustering approach to
optimize website structure discovery during penetration testing.
Journal of Computer Virology and Hacking Techniques, 20(4),
565-577. https://doi.org/10.1007/s11416-024-00512-6

[11] Aggarwal, V., Kaur, D., Mittal, S., Prasad, T. J. S., Batra, D., &
Garg, A. (2023). A comparative study of directory fuzzing tools. In
2023 International Conference on Circuit Power and Computing
Technologies (ICCPCT) (pp. 1368-1374). https://doi.org/10.1109/
ICCPCT58313.2023.10245217

[12] Antonelli, D., Cascella, R., Perrone, G., Romano, S., & Schiano,
A. (2021). Leveraging AI to optimize website structure discovery
during penetration testing. arXiv preprint.
https://doi.org/10.1007/s11416-024-00512-6

[13] Castagnaro, A., Conti, M., & Pajola, L. (2024). Offensive AI:
Enhancing directory brute-forcing attack with the use of language
models. arXiv. https://doi.org/10.48550/arxiv.2404.14138

[14] Dietrich, C., Krombholz, K., Borgolte, K., & Fiebig, T. (2018).
Investigating system operators’ perspective on security
misconfigurations. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (pp. 1272-
1289). https://doi.org/10.1145/3243734.3243794

[15] Hasan, M., Rozony, F. Z., Kamruzzaman, M., & Uddin, M. K. S.
(2024). Common cybersecurity vulnerabilities: Software bugs,
weak passwords, misconfigurations, social engineering. Deleted
Journal, 3(4), 42-57. https://doi.org/10.62304/jieet.v3i04.193

[16] Basak, S. K., Neil, L., Reaves, B., & Williams, L. (2022). What
are the practices for secret management in software artifacts?
SAGE Journals, 69-76. https://doi.org/10.1109/secdev53368.2022.
00026

[17] Akbar, M., Rafi, S., Hyrynsalmi, S., & Khan, A. (2024). Towards
people maturity for secure development and operations: A vision.
In Proceedings of the 28th International Conference on Evaluation
and Assessment in Software Engineering. https://doi.org/10.1145/
3661167.3661238

[18] Ramaj, X., Sánchez-Gordón, M., Palacios, R., & Gkioulos, V.
(2024). Training and security awareness under the lens of
practitioners: A DevSecOps perspective towards risk management.
In Lecture Notes in Computer Science. Springer.
https://doi.org/10.1007/978-3-031-61382-1_6

[19] Rajapakse, R., Zahedi, M., Babar, M., & Shen, H. (2021).
Challenges and solutions when adopting DevSecOps: A systematic
review. Information and Software Technology, 139, Article
106700. https://doi.org/10.1016/j.infsof.2021.106700

[20] Naidoo, R., & Möller, N. (2022). Building software applications
securely with DevSecOps: A socio-technical perspective.
European Conference on Cyber Warfare and Security.
https://doi.org/10.34190/eccws.21.1.295

[21] Tomas, N., Li, J., & Huang, H. (2019). An empirical study on
culture, automation, measurement, and sharing of DevSecOps. In
2019 International Conference on Cyber Security and Protection
of Digital Services (pp. 1-8). https://doi.org/10.1109/CyberSec
PODS.2019.8884935

[22] Bararia, A., & Choudhary, V. (2023). Systematic review of
common web-application vulnerabilities. International Journal of
Scientific Research in Engineering and Management.
https://doi.org/10.55041/ijsrem17487

[23] Kerr-Smith, T., Tirumala, S., & Andrews, M. (2024). Assessing
web application security through vulnerabilities in programming
languages and environments. In CITRENZ 2023 Conference,
Auckland (pp. 27-29). https://doi.org/10.34074/proc.240109

[24] Lombardi, F., & Fanton, A. (2023). From DevOps to DevSecOps
is not enough: CyberDevOps-An extreme shifting-left architecture
to bring cybersecurity within software security lifecycle pipeline.
Software Quality Journal, 31, 619-654. https://doi.org/10.1007/s
11219-023-09619-3

[25] Fadlalla, F., & Elshoush, H. (2023). Input validation vulnerabilities
in web applications: Systematic review, classification, and analysis
of the current state-of-the-art. IEEE Access, 11, 40128-40161.
https://doi.org/10.1109/ACCESS.2023.3266385

[26] Braun, V., & Clarke, V. (2006). Using thematic analysis in
psychology. Qualitative Research in Psychology, 3(2), 77-101.
https://doi.org/10.1191/1478088706qp063oa

[27] Jacques, S., & Wright, R. (2008). Intimacy with outlaws: The role
of relational distance in recruiting, paying, and interviewing
underworld research participants. Journal of Research in Crime
and Delinquency, 45(1), 22-38. https://doi.org/10.1177/002242
7807309439

[28] Yasar, H. (2018). Experiment: Sizing exposed credentials in
GitHub public repositories for CI/CD. In 2018 IEEE Cybersecurity
Development (SecDev) (p. 143). https://doi.org/10.1109/SecDev.
2018.00039

[29] Malatji, M. (2022). Industrial control systems cybersecurity: Back
to basic cyber hygiene practices. In 2022 International Conference
on Electrical, Computer and Energy Technologies (ICECET) (pp.
1-7). https://doi.org/10.1109/ICECET55527.2022.9872810

[30] Yaseen, K. A. Y. (2022). Importance of cybersecurity in the higher
education sector 2022. Asian Journal of Computer Science and
Technology, 11(2), 20-24. https://doi.org/10.51983/ajcst-
2022.11.2.3448

[31] Chen, Y., Zahedi, F. M., Abbasi, A., & Dobolyi, D. (2020). Trust
calibration of automated security IT artifacts: A multi-domain
study of phishing-website detection tools. Information &
Management, 58(1), Article 103394. https://doi.org/10.1016/j.im.
2020.103394

52AJIST Vol.15 No.1 January-June 2025

Aminu Muhammad Auwal

[32] Tilbury, J., & Flowerday, S. (2024). Automation bias and
complacency in security operation centers. Computers, 13(7),
Article 165. https://doi.org/10.3390/computers13070165

[33] Islam, M. S., Sajjad, M., Hasan, M. M., & Mazumder, M. S. I.
(2023). Phishing attack detecting system using DNS and IP
filtering. Asian Journal of Computer Science and Technology,
12(1), 16-20. https://doi.org/10.51983/ajcst-2023.12.1.3552

[34] Khan, M. S., Khan, A. W., Khan, F., Khan, M. A., & Whangbo, T.
K. (2022). Critical challenges to adopt DevOps culture in software
organizations: A systematic review. IEEE Access, 10, 14339-
14349. https://doi.org/10.1109/access.2022.3145970

[35] Khattak, K., Qayyum, F., Naqvi, S. S. A., Mehmood, A., & Kim, J.
(2023). A systematic framework for addressing critical challenges
in adopting DevOps culture in software development: A PLS-SEM
perspective. IEEE Access, 11, 120137-120156. https://doi.org/10.
1109/access.2023.3325325

[36] Ghobadi, S., & Mathiassen, L. (2014). Perceived barriers to
effective knowledge sharing in agile software teams. Information
Systems Journal, 26(2), 95-125. https://doi.org/10.1111/isj.12053

[37] Blaise, O. O., Aaron, I., Alfred, U., & Amusa, A. (2024).
Evaluating the ethical frameworks of information security
professionals: A comparative analysis. Asian Journal of Computer
Science and Technology, 13(2), 61-66. https://doi.org/10.70112/
ajcst-2024.13.2.4289

[38] Ravichandran, S., & Rao, K. L. N. (2022). Design and
development of an advancing web information stockpiling for
engraved ontology in user contours. Asian Journal of Computer
Science and Technology, 11(2), 11-15. https://doi.org/10.51983/
ajcst-2022.11.2.3379

[39] Auwal, A. M., & Lazarus, S. (2024). Sociological and
criminological research of victimization issues: Preliminary stage
and new sphere of cybercrime categorization. Journal of Digital
Technology & Law, 2(4), 915-942. https://doi.org/10.21202/jdtl.
2024.44

53 AJIST Vol.15 No.1 January-June 2025

Mitigation of Web Vulnerabilities Arising from Directory Brute-Forcing and Exposed Development Artifact: A Qualitative Study

	Abstract - Web applications increasingly face threats not only from sophisticated exploits but also from basic oversights such as misconfigured directories and exposed development artifacts. This study explores the awareness and mitigation strategies ...
	II. LITERATURE REVIEW
	A. Research Design
	B. Sampling Strategy
	C. Data Collection
	D. Ethical Considerations
	E. Data Analysis
	IV. FINDINGS OF THE STUDY
	B. Awareness of Artifact Exposure
	C. Over-Reliance on Tools and Automation
	D. Cultural and Communication Gaps Between Roles
	TABLE IV SUMMARY: COMMUNICATION AND ROLE CLARITY

	V. DISCUSSION
	A. Technical Awareness and Practice Gaps
	B. Over-Reliance on Automation Tools
	C. Organizational Culture and Communication Barriers
	D. Practical Implications for Stakeholders
	E. Limitations and Scope
	F. Future Research Directions

	VI. CONCLUSION
	VII. RECOMMENDATIONS

