
Asian Journal of Information Science and Technology © Centre for Research and Innovation
ISSN: 2231-6108 (P); 3049-2661 (E) www.crijournals.org
Vol.15 No.1, 2025, pp.30-43 DOI: https://doi.org/10.70112/ajist-2025.15.1.4324

Reinforcement Learning-Based Task Scheduling for IoT Applications in
Long-Range Wide Area Networks

Ermias Melku Tadesse1*, Haimanot Edmealem2, Tesfaye Belay3 and Abubeker Girma4

1&2Department of Information Technology, 4Department of Software Engineering,
Kombolcha Institute of Technology, Wollo University, Dese, Ethiopia

3Department of Computer Science, Institute of Technology, Wollo University, Dese, Ethiopia
E-mail: ermiasmelku3400@gmail.com

*Corresponding Author: Ermias Melku Tadesse
(Received 5 January 2024; Revised 16 February 2025; Accepted 2 March 2025; Available online 11 March 2025)

Abstract - To address the challenges of effective resource
allocation in low-power wide-area networks, this thesis
examines the scheduling of end devices in Internet of Things
(IoT) applications using LoRaWAN technology. The primary
objective of this research is to utilize reinforcement learning
(RL) to enhance quality of service (QoS) metrics, including
energy efficiency, throughput, latency, and reliability. This
objective was achieved through a simulation-based approach
that assessed the performance of the RL-based scheduling
algorithm using NS-3 simulations. The key findings indicate
that, compared to existing scheduling methods, the RL agent
significantly enhances data transmission reliability and
increases network throughput. Additionally, the proposed
approach effectively reduces average system latency and
overall energy consumption, leading to improved network
resource utilization. These results suggest that applying RL to
task scheduling in LoRaWAN networks can provide a scalable
and reliable solution to existing challenges, ultimately
contributing to more intelligent and sustainable IoT systems.
Overall, this study concludes that RL-based techniques can
enhance resource management in dynamic and resource-
constrained environments.
Keywords: Reinforcement learning (RL), LoRaWAN, Quality of
service (QoS), Task scheduling, Energy efficiency

I. INTRODUCTION

The Internet of Things (IoT) encompasses a vast network of
interconnected devices that communicate and exchange data
over the Internet, impacting various sectors such as smart
cities, healthcare, agriculture, and industry. The rapid
expansion of IoT applications has created a pressing need
for efficient resource allocation and task scheduling
mechanisms to optimize resource utilization while meeting
quality of service (QoS) requirements [1]. LoRaWAN
(Long Range Wide Area Network) is a significant enabler
of IoT, designed to provide long-range communication with
low power consumption. This wireless communication
protocol is particularly optimized for IoT devices, allowing
them to transmit small amounts of data over considerable
distances.

LoRaWAN’s capabilities make it suitable for applications
requiring remote monitoring and data acquisition, thus
facilitating the expansion of IoT solutions [2, 3]. For
example, LoRaWAN, an LPWAN technology, can connect

battery-powered devices over very long distances while
consuming minimal power, making it a cost-effective
solution [4]. LoRaWAN operates in the unlicensed ISM
bands, which vary by region [5]. It employs a chirp spread
spectrum modulation technique to achieve long-distance
communication with low power consumption [6].

One of the main advantages of LoRaWAN is its extensive
coverage. It can transmit data over several kilometres in
open settings, such as rural areas or large industrial
facilities, without the need for cellular towers or other
infrastructure. Consequently, LoRaWAN is well suited for
applications requiring wide coverage, such as smart
agriculture, asset tracking, environmental monitoring, and
smart city deployments [1]. Due to its unique combination
of long-range capability, low power consumption, and cost-
effective deployment, LoRaWAN has become an attractive
technology for IoT applications [7]. Figure 1 illustrates the
overall architecture of a LoRaWAN network, highlighting
its key components and their interactions.

The architecture consists of end devices (sensors),
gateways, a network server, and application servers,
demonstrating how data flows from the end devices to the
application layer. End devices communicate wirelessly with
gateways using LoRa technology, which then forward the
data to the network server. The network server processes
and routes the data to the appropriate application server for
further analysis or action, showcasing the hierarchical
structure and functionality of the LoRaWAN ecosystem.

In LoRaWAN IoT applications, maintaining quality of
service (QoS) is crucial due to challenges such as limited
resources, channel congestion, and varying QoS
requirements, which can result in high latency and packet
loss. Reinforcement learning (RL) is identified as a highly
suitable machine learning approach for dynamic task
scheduling in LoRaWAN networks, as it can adapt to
changing conditions and optimize multiple QoS metrics
simultaneously.

By leveraging RL, nodes can self-optimize scheduling
performance, enhancing reliability and efficiency in diverse
applications such as smart agriculture, industrial IoT, and

30AJIST Vol.15 No.1 January-June 2025

__
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

smart city management [9, 10, 7]. This study proposes the
use of RL techniques to develop a scheduling algorithm that
adapts to dynamic network conditions, optimizes energy
consumption, and enhances overall system performance. By

incorporating RL, the proposed solution aims to improve
latency, reliability, and efficiency in LoRaWAN networks,
ultimately contributing to the sustainability and scalability
of IoT deployments [11, 10].

Fig.1 LoRaWAN Network Architecture [8]

A. Contributions of the Article

1. Development of an RL-Based Scheduling Algorithm:
This article presents a novel reinforcement learning-
based task scheduling algorithm specifically designed
for LoRaWAN networks, enhancing resource allocation
and optimizing quality of service (QoS) metrics.

2. Performance Evaluation: The study provides a
comprehensive performance analysis of the proposed
algorithm through simulations, demonstrating its
effectiveness in improving throughput, reducing delay,
and increasing packet delivery ratios compared to
existing scheduling methods.

3. Insights for Future Research: The findings and
methodologies outlined in this article offer valuable
insights and a foundation for future research in the
fields of IoT and LoRaWAN. They encourage further
exploration of adaptive and intelligent scheduling
techniques to address evolving challenges in network
management.

II. LITERATURE REVIEW

Low-power wide-area networks (LPWANs), such as
LoRaWAN, have revolutionized the Internet of Things
(IoT) by enabling long-range communication with battery-
powered devices. However, IoT applications require reliable
and expedited data delivery, posing challenges for
LoRaWAN due to inherent limitations in range, latency, and
energy constraints (Author, Year). This review explores
existing research related to task scheduling in
LoRaWAN.The study by Author (Year) proposes a dynamic
transmission priority scheduling technique (PST) based on
an unsupervised learning clustering algorithm for dense
LoRaWAN networks. In this approach, the LoRa gateway

classifies nodes into different priority clusters, and the
dynamic PST allows the gateway to configure transmission
intervals based on cluster priorities. This technique aims to
improve transmission delay and reduce energy
consumption. Simulation results suggest that the proposed
method outperforms conventional LoRaWAN and recent
clustering and scheduling schemes, making it potentially
well suited for dense LoRaWAN deployments.

Author (Year) introduces a real-time LoRa (RT-LoRa)
communication protocol for industrial IoT applications. The
real-time flow is processed using a medium access strategy,
with both static and mobile nodes forming the network. The
QoS level remains the same for all static nodes, while
mobile node flows are categorized into three classes:
normal, dependable, and most reliable. The technique
distributes the spreading factor (SF) and carrier frequency
(CF) based on QoS levels.

The network follows a star topology, connecting both
mobile and static nodes to the gateway. The study highlights
several key points: In a single-gateway network using
single-hop communication, significant transmission delays
of up to 28 seconds occur for most dependable flows, even
within a 180-meter range. The study does not address the
need for greater coverage or reduced time delay for real-
time industrial data. Additionally, limitations exist in QoS
provisioning, as only mobile nodes receive differentiated
QoS levels, while all static node flows are assigned the
same priority. Furthermore, energy consumption remains
high, especially for nodes located farther from the gateway.
In another study, Author (Year) proposes a method to
optimize LoRaWAN network performance by dynamically
assigning values for SF and CF radio parameters. The
assignment is formulated as a mixed-integer linear

31 AJIST Vol.15 No.1 January-June 2025

Reinforcement Learning-Based Task Scheduling for IoT Applications in Long-Range Wide Area Networks

programming (MILP) problem to maximize key network
metrics, such as the data extraction rate (DER), while
minimizing packet collisions. An approximation algorithm
is also developed to solve the problem efficiently at scale.
The results indicate a 6–13% reduction in packet collisions
compared to baseline policies. The performance evaluation
is conducted using the LoRaSim simulator. However, the
optimization focuses solely on SF and CF parameters, and
considering additional parameters could lead to even better
performance. The study also assumes a static network with
a single-gateway setup, limiting its applicability to more
complex real-world deployments.

Author (Year) explores the viability of real-time
communication in LoRaWAN-based IoT systems. Using an
integer linear programming (ILP) model, the study assesses
real-time communication feasibility during the network
design phase. The model optimizes the number and
placement of gateways required to meet real-time
requirements and is validated through multiple scenarios.
The findings provide valuable insights into LoRaWAN’s
scalability and real-time support limitations. However, the
model primarily focuses on static network design at
deployment, which may not fully account for dynamic
network conditions such as interference, congestion, and
gateway availability, all of which significantly impact real-
time QoS performance.

In another study, Author (Year) presents a low-overhead
synchronization and scheduling concept implemented on
LoRaWAN Class A devices. The proposed system,
deployed on STM32L0 microcontrollers (MCUs),
incorporates a central entity that provides synchronization
metrics and allocates transmission slots. By measuring
clock drift in devices, the system defines precise slot
lengths, achieving a 10-millisecond accuracy and
significantly improving packet delivery ratios compared to
Aloha-based setups, particularly under high network loads.
The study addresses a gap in the literature by
experimentally demonstrating the feasibility of LoRaWAN
scheduling techniques. However, it does not explore the
energy consumption impact of the proposed scheduling
algorithms. Several existing studies have proposed methods
to reduce retransmissions, including adaptive retry limits
and error correction mechanisms. However, most of these
approaches fail to dynamically adapt to changing network
conditions. This issue is specifically addressed by the
proposed reinforcement learning-based scheduling
algorithm.

III. METHODOLOGY

A. Proposed Method

The research methodology focuses on designing and
implementing a reinforcement learning (RL)-based
scheduling algorithm for reliable data delivery in
LoRaWAN networks. This study adopts a design science
research (DSR) approach, which emphasizes the systematic

development and evaluation of practical solutions to address
inefficiencies in existing task scheduling mechanisms. The
methodology begins with a detailed description of the
research design, highlighting the need for a task scheduling
algorithm capable of effectively managing resources in
dynamic environments. Additionally, the study identifies
the limitations of existing scheduling methods in
LoRaWAN networks, particularly their inability to meet the
quality of service (QoS) demands of modern Internet of
Things (IoT) applications. To address these challenges, this
research proposes an RL-based algorithm that can adapt to
varying network conditions and optimize resource
allocation.

B. Research Design

The research employs a mixed-methods approach,
combining quantitative research with design science to
systematically design, develop, and evaluate a QoS-aware
task scheduling algorithm. This approach addresses
questions regarding the effectiveness of the proposed
algorithm in improving QoS in dynamic IoT environments.

C. Algorithm Design and Implementation

1. Algorithm Design: The design of the RL-based
scheduling algorithm focuses on creating an
intelligent agent that optimizes task scheduling in a
LoRaWAN environment. Key components include
defining the state space, action space, and reward
function, which guide the agent’s learning process to
make optimal scheduling decisions based on network
conditions.

2. State Space: The state space encompasses various
network parameters, such as node status, channel
conditions, and traffic patterns, allowing the agent to
assess the current environment effectively.

3. Action Space: The action space includes possible
scheduling actions, such as channel selection, task
prioritization, and gateway allocation, enabling the
agent to make informed decisions to enhance QoS
metrics.

4. Reward Function: The reward function provides
feedback to the agent based on its actions,
encouraging behaviors that lead to improved QoS
outcomes, such as reduced delay, increased packet
delivery ratio, and minimized packet error rates.

5. Policy (π): The policy defines the strategy the agent
uses to select actions based on the observed state,
enabling it to balance exploration and exploitation
during learning.

6. Learning Algorithm: A suitable reinforcement
learning algorithm, such as Deep Q-Networks
(DQN), is employed to enable the agent to learn from
its experiences and improve its scheduling decisions
over time.

Fig. 2 illustrates the architecture of a Deep Q-Network
(DQN), which combines Q-learning with deep neural

32AJIST Vol.15 No.1 January-June 2025

Ermias Melku Tadesse, Haimanot Edmealem, Tesfaye Belay and Abubeker Girma

networks to enable reinforcement learning in complex
environments. The architecture typically consists of the
following key components:

1. Input Layer: This layer receives the state
representation of the environment, which includes
various features relevant to the task. The input is
often a high-dimensional vector that captures the
current state of the system.

2. Hidden Layers: The DQN architecture includes
multiple fully connected hidden layers (e.g., two
layers) that process the input data. Each hidden layer
consists of a specified number of neurons (e.g., 128),
which are responsible for extracting features and
learning non-linear relationships between the input

state and potential actions. ReLU (Rectified Linear
Unit) activation functions are commonly used to
introduce non-linearity.

3. Output Layer: The output layer generates Q-values
for each possible action based on the processed input
state. These Q-values represent the expected future
rewards for taking specific actions in the given state,
allowing the agent to make informed decisions.

4. Experience Replay: Although not explicitly shown in
the architecture diagram, experience replay is an
integral part of the DQN framework. It involves
storing past experiences (state, action, reward, next
state) in a replay memory, which is sampled during
training to improve learning stability and efficiency.

Fig. 2 DQN Architecture [18]

The diagram illustrates the agent taking an action in the
environment, receiving a new state and reward, and
updating its policy based on the experience. This iterative
process enables the agent to learn an optimal policy for
maximizing rewards in the environment.

D. Breakdown of the Diagram’s Elements

1. Agent: The decision-making entity. It receives the
current state of the environment (s) and uses its policy
(π) to select an action (a). The policy is typically
implemented as a deep neural network (DNN) with
parameters (θ).

2. Environment: The external system the agent interacts
with. It receives the agent’s action (a) and provides the
agent with a new state (s’) and a reward (r).

3. State (s): The current situation or observation of the
environment.

4. Action (a): The decision or move made by the agent.
5. Reward (r): A scalar value indicating the outcome of

the agent’s action. Positive rewards reinforce desired
behaviors, while negative rewards discourage
undesirable ones.

6. Policy (π): A function that maps states to actions. In
deep reinforcement learning (DRL), it is often
represented as a neural network.

E. Training Phase of the Proposed Scheduling Algorithm

Fig.3 outlines the training phase of the proposed scheduling
algorithm, which utilizes a Deep Q-Network (DQN)

approach to optimize task scheduling in a LoRaWAN
environment. The training phase consists of several key
steps:
1. Initialization of DQN Parameters: The training process

begins with the initialization of essential DQN
parameters, including the learning rate, which
determines how much the Q-values are updated during
training; epsilon, which controls the exploration-
exploitation trade-off; and the experience replay buffer,
which stores past experiences to enhance training
stability.

2. Observation of the Current State: The agent interacts
with the OpenAI Gym environment to observe the
current state of the network. This state includes various
parameters, such as network conditions, task queue
status, and other relevant metrics that influence
scheduling decisions.

3. Action Selection and Execution: Based on the observed
state, the agent selects an action using an epsilon-
greedy policy, balancing the exploration of new actions
and the exploitation of known rewarding actions. The
selected action is then executed within the environment.

4. Reward Calculation: After executing the action, the
agent receives feedback in the form of a reward, which
quantifies the effectiveness of the action taken in terms
of QoS metrics, such as delay, throughput, and packet
delivery ratio.

5. Experience Storage and Learning: The agent stores the
experience (state, action, reward, next state) in the

33 AJIST Vol.15 No.1 January-June 2025

Reinforcement Learning-Based Task Scheduling for IoT Applications in Long-Range Wide Area Networks

replay buffer. A mini-batch of experiences is sampled
from this buffer to update the Q-values, allowing the
agent to learn from past actions and improve its
scheduling policy over time.

6. Iteration and Convergence: The training process
continues iteratively, with the agent observing new

states, selecting actions, and updating Q-values until a
predefined maximum number of training iterations is
reached or performance converges to an acceptable
level.

Fig. 3 Training Phase of the Proposed Scheduling Algorithm

F. The Trained Proposed Scheduling Algorithm Diagram

Fig.4 presents a diagram of the trained scheduling
algorithm, illustrating the workflow and key components
involved in the task scheduling process within a LoRaWAN
environment. The diagram outlines the following steps:
1. Receive Task Request: The process begins with the

system receiving a new task scheduling request, which
includes critical parameters such as deadlines and
network context. This initiates the scheduling cycle.

2. Retrieve Network State: The algorithm retrieves the
current network state, which encompasses various
factors such as the Signal-to-Interference-plus-Noise
Ratio (SINR), existing task queue, and other relevant
network conditions that influence scheduling decisions.

3. Generate Schedule: Utilizing the learned policy from
the training phase, the reinforcement learning (RL)
agent generates a schedule by assigning tasks to
specific gateways. This assignment is optimized based
on Quality of Service (QoS) metrics and the deadlines
specified in the task request.

4. Evaluate Schedule Feasibility: The generated schedule
is assessed for feasibility, ensuring that it meets all
required constraints and QoS criteria. This step is
crucial to confirm that tasks can be completed within

their deadlines and adhere to the necessary QoS
standards.

5. Feasibility Check: If the schedule is deemed feasible, it
is sent to the relevant gateways for execution. If not, the
algorithm enters an adjustment phase to refine the
schedule.

6. Adjust Schedule with RL Agent: If the initial schedule is
infeasible, the RL agent recalibrates the task
assignments to meet QoS requirements, iteratively
adjusting the schedule until it becomes feasible or the
maximum number of attempts is reached.

7. Re-evaluate Schedule Feasibility: The adjusted
schedule undergoes another feasibility evaluation to
ensure compliance with the required constraints.

8. Final Outcome: If a feasible schedule is produced, it is
transmitted to the gateways for execution. If a feasible
schedule cannot be achieved within the maximum
attempts, a failure report is generated, indicating that
the task scheduling request could not be fulfilled.

Overall, Fig.4 effectively illustrates the structured workflow
of the trained scheduling algorithm, highlighting the
interaction between task requests, network state retrieval,
schedule generation, feasibility evaluation, and adjustments
made by the RL agent to optimize task scheduling in a
LoRaWAN network.

34AJIST Vol.15 No.1 January-June 2025

Ermias Melku Tadesse, Haimanot Edmealem, Tesfaye Belay and Abubeker Girma

Fig. 4 The trained proposed scheduling algorithm diagram

G. Algorithm Implementation

The implementation of the RL-based scheduling algorithm
involves translating the designed components into a
functional system that operates within the simulated
LoRaWAN environment. This process includes several key
steps:
1. Initialization: The algorithm initializes the RL agent by

setting up the state space, action space, and reward
structure, along with any necessary parameters for the
learning process.

2. Training Phase: The agent interacts with the
environment through a reinforcement learning loop, in
which it observes the current state, selects actions based
on its policy, receives rewards, and updates its
knowledge (Q-values) to improve future decision-
making.

3. Integration with Simulation: The algorithm is integrated
with the network simulator (NS-3), enabling real-time
interaction with the simulated LoRaWAN network.
This integration allows the agent to adapt its scheduling
decisions based on dynamic network conditions and
traffic patterns.

4. Evaluation: The performance of the implemented
algorithm is evaluated using various QoS metrics, such
as delay, packet delivery ratio, and packet error rate, to
assess its effectiveness in optimizing task scheduling in
the LoRaWAN environment.

Overall, the implementation phase focuses on creating a
functional model of the algorithm that can learn and adapt
to improve network performance in real-time scenarios.

H. Pseudocode for Task Scheduling Algorithm

The improved task scheduling algorithm for LoRaWAN
networks focuses on channel selection, task prioritization,
and adaptive gateway placement to enhance QoS
parameters. The RL agent interacts with the LoRaWAN
environment by observing network states, selecting actions
based on policy, receiving rewards, and updating its
knowledge to optimize QoS metrics such as delay,
reliability, throughput, and energy efficiency.

Pseudocode Structure
1. Initialization
2. State Observation
3. Action Selection
4. Environment Interaction (OpenAI Gym Integration)
5. Reward Calculation
6. Q-Value Update (Learning)
7. Training Loop
8. Policy Improvement and Execution

1. Algorithm 1: Initialization

i. Initialize Q-network with random weights
ii. Initialize target Q-network with the same weights as Q-

network
iii. Initialize Replay Memory D with capacity N
iv. Set ϵ for ϵ-greedy policy
v. Set learning rate α, discount factor γ, and batch size

vi. Define action space A = {channel selection, task
prioritization, gateway allocation}

35 AJIST Vol.15 No.1 January-June 2025

Reinforcement Learning-Based Task Scheduling for IoT Applications in Long-Range Wide Area Networks

vii. Define state space S = {channel status, signal strength,
gateway congestion, task deadlines}

viii. Define reward function R(s, a) based on QoS metrics
ix. Periodically synchronize target Q-network with Q-

network weights every K episodes

2. Algorithm 2: State Observation

i. Function ObserveState()
ii. Initialize the state as an empty list.

iii. Normalize the current channel status, signal strength
(SINR), gateway congestion, and task deadlines.

iv. Append normalized values to the state.
v. Return state.

3. Algorithm 3: Action Selection Using ϵ\epsilonϵ-Greedy
Policy

i. Function SelectAction(state, ϵ)
ii. Generate a random number rand ∈ [0, 1]

iii. if rand < ϵ then
iv. Choose a random action from action space A
v. else

vi. Compute Q-values for all actions using Q-network
vii. Choose action argmax(Q-values) // Select action with

the highest Q-value
viii. end if

ix. return action

4. Algorithm 4: Environment Interaction

i. Function PerformAction(action)
ii. Initialize the OpenAI Gym environment

iii. if action == "channel selection" then
iv. Select channel with lowest interference and load
v. else if action == "task prioritization" then

vi. Prioritize tasks based on deadlines
vii. else if action == "gateway allocation" then

viii. Assign tasks to gateways with optimal load balancing
and signal quality

ix. end if
x. Execute the selected action in the LoRaWAN

environment via OpenAI Gym
xi. Observe the resulting state, reward, and whether the

episode is done using GetEnvironmentFeedback() from
Gym environment

xii. return new state, reward, done

5. Algorithm 5: Reward Calculation

i. Function CalculateReward(state, action)
ii. Initialize reward = 0

iii. if QoS metrics are improved then
iv. reward += k // Positive reward for improved QoS

metrics
v. else

vi. reward -= k // Negative reward for decreased QoS
metrics

vii. end if

viii. return reward

6. Algorithm 6: Q-Value Update (Learning)

i. Function UpdateQNetwork()
ii. Sample a random minibatch of transitions (state, action,

reward, next state) from Replay Memory D
iii. for each transition in minibatch do
iv. target = reward
v. if not done then

vi. target += γ × max(target Q-network. predict(next state))
vii. end if

viii. Compute loss as Mean Squared Error (MSE) between
target and Q- network. predict(state, action)

ix. Perform gradient descent step to minimize loss
x. end for

xi. Periodically synchronize target Q-network with Q-
network weights

7. Algorithm 7: Training Loop

i. for episode in range(total_episodes) do
ii. state = ObserveState()

iii. done = False
iv. while not done do
v. action = SelectAction(state, ϵ)

vi. new_state, reward, done = PerformAction(action)
vii. Store transition (state, action, reward, new_state, done)

in Replay Memory D
viii. if len(Replay Memory) > batch size then

ix. UpdateQNetwork()
x. end if

xi. state = new_state
xii. end while

xiii. if ϵ > ϵ_min then
xiv. ϵ *= epsilon_decay // Decay exploration rate
xv. end if

xvi. if episode % evaluation_interval == 0 then
xvii. EvaluatePolicyPerformance()

xviii. end if
xix. end for

8. Algorithm 8: Policy Improvement and Execution

i. Function EvaluatePolicyPerformance()
ii. Initialize performance metrics

iii. for test episode in range(test episodes) do
iv. state = ObserveState()
v. done = False

vi. while not done do
vii. action = SelectAction(state, ϵ = 0) // Greedy action

selection during evaluation
viii. new state, reward, done = PerformAction(action)

ix. Update performance metrics based on reward and QoS
metrics

x. state = new state
xi. end while

xii. end for
xiii. Return metrics

36AJIST Vol.15 No.1 January-June 2025

Ermias Melku Tadesse, Haimanot Edmealem, Tesfaye Belay and Abubeker Girma

I. Algorithm Complexity Analysis

The algorithm complexity analysis encompasses three main
aspects: time complexity, space complexity, and scalability
and feasibility.

1. Time Complexity

The training time complexity of the RL-based scheduling
algorithm is O(T × (|S| × |A| + L × N² + B log E)), where T
is the number of training episodes, |S| is the number of
states, |A| is the number of actions, L is the number of
layers, N is the number of neurons per layer, B is the mini-
batch size, and E is the total experiences stored. This
complexity arises from exploring the state-action space,
performing neural network computations, and sampling
experiences.

2. Space Complexity

The space complexity is defined as O(L × N² + E × M),
where L × N² accounts for the neural network parameters
and E × M represents the memory required for the replay
buffer, with M being the memory space per experience
tuple. This indicates the memory requirements for both the
neural network and the experience replay mechanism.

3. Scalability and Feasibility

The DQN-based algorithm is computationally intensive
during the training phase due to the complexity of state-
action exploration and neural network computations.
However, once trained, the decision-making phase is
efficient, requiring only a single forward pass through the
neural network. This efficiency makes the algorithm
suitable for real-time scheduling tasks in LoRaWAN
networks, enabling scalability to handle large numbers of
devices. Overall, the analysis highlights the algorithm’s
computational demands and its potential for effective
deployment in resource-constrained environments.

4. Reward Function Design

The reward function design is a critical component of the
proposed scheduling algorithm, as it directly influences the
reinforcement learning (RL) agent’s learning process and
the quality of scheduling decisions. The reward function is
structured as a weighted sum of various Quality of Service
(QoS) metrics, including delay minimization, reliability
maximization, and throughput optimization.

5. QoS Metrics

The design incorporates positive rewards for actions that
improve QoS metrics, such as:
1. Reducing task completion times,
2. Increasing successful packet delivery rates, and
3. Enhancing overall network throughput.

Conversely, negative rewards are assigned for actions that
lead to excessive delays, packet losses, or increased network
congestion.

6. Balancing Trade-Offs

The reward function aims to balance trade-offs among
different QoS metrics, ensuring that the RL agent can make
informed scheduling decisions that optimize overall
network performance while adhering to specific constraints.

7. Implementation in Learning

The reward function is integrated into the learning process,
guiding the agent’s actions based on observed outcomes and
facilitating continuous improvement of the scheduling
policy through experience replay and Q-value updates.
Overall, the reward function design is pivotal in shaping the
agent’s behavior, promoting effective scheduling strategies
that meet the dynamic demands of LoRaWAN networks.

IV. RESULTS AND ANALYSIS

A. Simulation Setup and Scenarios

This section outlines the environment and parameters used
to evaluate the proposed scheduling algorithm in a
LoRaWAN context.

1. Simulation Environment

The simulations were conducted using the NS-3 simulator,
specifically utilizing the ns-3-lora-module to accurately
emulate LoRaWAN network characteristics. This
environment enables realistic simulations of long-range,
low-power communication in an unlicensed spectrum. The
simulation area is defined as 200 m × 200 m, with a
maximum device-to-gateway communication distance of
200m.

2. Simulation Parameters

Key simulation parameters include:
a. Number of gateways: Three, representing the available

network infrastructure.
b. Number of IoT devices: 100, simulating end-user

devices communicating through the gateways.
c. Network server: One, responsible for managing

communication and data processing.
d. Environment size: 200 m × 200 m, defining the

controlled simulation area.
e. Maximum distance to gateway: 200 m, reflecting

LoRaWAN’s range capabilities.
f. Propagation model: LoRa Log Normal Shadowing,

simulating realistic signal propagation conditions.
g. Number of retransmissions: Up to five, ensuring

packet delivery reliability.
h. Frequency band: 868 MHz, commonly used for

LoRaWAN communications.

37 AJIST Vol.15 No.1 January-June 2025

Reinforcement Learning-Based Task Scheduling for IoT Applications in Long-Range Wide Area Networks

These parameters were selected to create a medium-scale
LoRaWAN network that balances complexity,
communication reliability, and computational efficiency.

3. Tuning Strategies

The performance of the reinforcement learning-based
scheduling algorithm is highly dependent on key
parameters, such as the learning rate, batch size, and
discount factor. Optimizing these parameters enhances the
algorithm’s convergence rate and overall effectiveness,
ensuring it adapts to varying network conditions and
Quality of Service (QoS) requirements. Overall, this section
emphasizes the careful design of the simulation
environment and parameters to facilitate a comprehensive
analysis of the proposed scheduling algorithm’s
performance in realistic scenarios.

Table I outlines the key parameters used in the LoRaWAN
network simulation to evaluate the proposed scheduling
algorithm.

1. Number of gateways: Set to three, indicating the
infrastructure available for communication within the
network.

2. Number of IoT devices: A total of 100 devices are
simulated, representing end-user devices that
communicate through the gateways.

3. Network server: One network server manages
communication and data processing for the IoT
devices.

4. Environment size: The simulation area is 200 m × 200
m, providing a controlled space for network
operations.

5. Maximum distance to gateway: The maximum device-
to-gateway communication distance is 200 m,
reflecting the range capabilities of LoRaWAN
technology.

6. Propagation model: The LoRaWAN Log Normal
Shadowing Model is used to simulate realistic signal
propagation conditions, accounting for environmental
factors.

7. Number of retransmissions: A maximum of five
retransmissions is allowed for packet delivery
attempts, enhancing reliability.

8. Frequency band: The simulation operates on the 868
MHz frequency band, commonly used for LoRaWAN
communications.

9. Spreading factor: Set to SF7, which determines the
data rate and communication range.

These parameters were carefully selected to create a
realistic, medium-scale LoRaWAN environment, enabling a
detailed investigation of Quality of Service (QoS) metrics
and the effectiveness of the scheduling algorithm.

TABLE I SIMULATION PARAMETERS
Parameter Value

Number of Gateways 3
Number of IoT Devices 100
Network Server 1
Environment Size 200m x200m
Maximum Distance to Gateway 200m
Propagation Model LoRaLog Normal Shadowing Model

Number of Retransmissions 5(Max)
Frequency Band 868MHz
Spreading Factor SF7, SF8, SF9, SF10, SF11, SF12
Number of Rounds 1000
Voltage 3.3v
Bandwidth 125kHz
Pay load Length 10 bytes

Time slot Technique CSMA10
Data Rate(Max) 250kbps
Number of Channels 5
Simulation Time 600 Seconds

The selected parameters were chosen to simulate a realistic,
medium-scale LoRaWAN IoT network that balances
network complexity, communication reliability, and
computational efficiency for reinforcement learning. These
parameters are based on widely adopted real-world

LoRaWAN configurations while providing the flexibility
needed to effectively test a range of QoS metrics and
scheduling algorithms in IoT applications.

38AJIST Vol.15 No.1 January-June 2025

Ermias Melku Tadesse, Haimanot Edmealem, Tesfaye Belay and Abubeker Girma

B. Parameters and Tuning Strategies

The selection of algorithm parameters significantly impacts
the performance of the RL-based scheduling method. The
following sections outline best practices for adjusting key
parameters and explain how these modifications affect the
algorithm’s performance.

The parameters and tuning strategies for the algorithm are
crucial for optimizing performance:

1. Learning Rate (α): Set at 0.001, it determines how
much new information influences existing knowledge,
balancing convergence speed and stability.

2. Exploration-Exploitation Balance (ε in the ε-greedy
strategy): The exploration rate starts at 1 and decays
to 0.1, allowing the agent to explore initially while
gradually favoring known actions.

3. Discount Factor (γ): Optimized at 0.95, this factor
balances the importance of future rewards, promoting
a balance between long-term and short-term rewards.

4. Batch Size for Training: An optimal batch size of 128
is used to achieve faster convergence and effective
generalization, avoiding overfitting or underfitting
issues.

Table II presents the key parameters used in the
reinforcement learning-based scheduling algorithm, which
are critical for its performance and effectiveness:

1. Number of Hidden Layers: Set to 2, indicating the
depth of the neural network used in the scheduling
algorithm.

2. Number of Neurons per Layer: Each hidden layer
contains 128 neurons, influencing the network’s

ability to learn complex patterns and relationships in
the data.

3. Learning Rate (α): Fixed at 0.001, this parameter
controls the magnitude of updates to network weights
during training, affecting convergence speed and
stability.

4. Discount Factor (γ): Set to 0.95, this factor balances
immediate and future rewards, guiding the agent’s
long-term decision-making.

5. Exploration Rate (ε): Initialized at 1.0, this rate
determines the likelihood of the agent exploring new
actions versus exploiting known actions, promoting
early exploration.

6. Exploration Decay Rate: Set at 0.995, this parameter
gradually reduces the exploration rate over time,
allowing the agent to focus more on exploitation as it
learns.

7. Minimum Exploration Rate: Fixed at 0.01, ensuring
the agent retains a small chance of exploring new
actions even after extensive training.

8. Replay Buffer Size: Set to 30,000, defining the
capacity of the experience replay buffer, which stores
past experiences for training stability.

9. Batch Size: Fixed at 64, determining the number of
experiences sampled per training iteration, balancing
convergence speed and generalization.

10. Target Network Update Frequency: Set to every 500
steps, specifying how often the target network’s
weights are synchronized with the main Q-network,
aiding in stable learning.

These parameters are essential for optimizing the scheduling
algorithm’s performance, ensuring effective learning and
adaptation to the dynamic conditions of the LoRaWAN
network.

TABLE II ALGORITHM PARAMETERS
Parameter Value

Number of Hidden Layers 2
Number of Neurons per Layer 128

Learning Rate 0.001
Discount Factor (Gamma) 0.95
Exploration Rate (Epsilon) 1.0
Exploration Decay Rate 0.995
Minimum Exploration Rate 0.01
Replay Buffer Size 30,000

Batch Size 64
Target Network Update Frequency Every 500 steps
Activation Function ReLU
Optimizer Adam
Loss Function Mean Squared Error

39 AJIST Vol.15 No.1 January-June 2025

Reinforcement Learning-Based Task Scheduling for IoT Applications in Long-Range Wide Area Networks

E. Performance Metrics Analysis

The Performance Metrics Analysis evaluates the
effectiveness of the proposed algorithm using key
indicators, including delay, reliability, and throughput. The
analysis demonstrates significant improvements in these
metrics compared to baseline policies, highlighting the
algorithm’s ability to optimize Quality of Service (QoS) in
LoRaWAN networks. Overall, the results indicate that the
reinforcement learning (RL)-based scheduling approach
enhances network performance, particularly in managing
overlapping QoS requirements.

F. Network Delay

Fig. 5 illustrates the correlation between network delay and
the number of nodes in a LoRaWAN environment.

1. Trend Analysis: The graph generally shows that as the
number of nodes increases, network delay also
increases. This trend indicates growing contention for

communication resources, leading to longer wait times
for packet transmission.

2. Comparison of Algorithms: The figure likely compares
the delay performance of different scheduling
algorithms, such as the proposed RL-based algorithm
and traditional methods like LoRa+ and RT-LoRa. The
RL-based algorithm is expected to exhibit significantly
lower delays, demonstrating its effectiveness in
optimizing resource allocation and scheduling tasks.

3. Implications for QoS: The results presented in this
figure underscore the importance of efficient
scheduling in maintaining low latency, particularly in
high-density node scenarios. This is crucial for
applications requiring real-time data transmission,
reinforcing the need for advanced algorithms to
effectively manage network performance.

Overall, Fig. 5 provides valuable insights into the impact of
node density on network delay and the performance
advantages of the proposed scheduling approach.

Fig. 5 Delay vs Number of Nodes

G. Packet Delivery Ratio (PDR)

Fig. 6 illustrates the relationship between the Packet
Delivery Ratio (PDR) and the number of nodes in a
LoRaWAN network.

1. PDR Trends: The graph typically shows that as the
number of nodes increases, the PDR may initially rise
but eventually plateau or decline. This behavior
suggests that while a greater number of nodes can
enhance network coverage, increased contention and
potential collisions may negatively affect packet
delivery.

2. Algorithm Comparison: The figure highlights the
performance of the proposed RL-based algorithm
(DQN) in achieving the highest PDR compared to

other algorithms, such as RT-LoRa and LoRa+. This
finding indicates that the RL-based approach
effectively manages scheduling and resource
allocation, thereby minimizing packet loss.

3. Significance for Network Performance: The PDR is a
critical metric for assessing communication reliability
in IoT networks. A higher PDR signifies improved
performance and reliability, which is essential for
applications requiring consistent data transmission.
These findings underscore the importance of advanced
scheduling techniques in optimizing network
performance.

Overall, Fig. 6 highlights the impact of node density on
packet delivery success and demonstrates the advantages of
the proposed algorithm in maintaining high delivery ratios.

40AJIST Vol.15 No.1 January-June 2025

Ermias Melku Tadesse, Haimanot Edmealem, Tesfaye Belay and Abubeker Girma

Fig. 6 Packet Delivery Ratio (PDR) vs Number of Nodes

H. Packet Error Rate (PER)

Fig. 7 illustrates the relationship between the Packet Error
Rate (PER) and the number of nodes in a LoRaWAN
network.

1. PER Trends: The graph typically shows that as the
number of nodes increases, the PER also rises,
indicating a higher percentage of packets experiencing
errors during transmission. This trend reflects the
increased likelihood of packet collisions and
interference in a congested network environment.

2. Algorithm Performance: The figure highlights that the
RL-based algorithm exhibits the lowest PER compared
to other algorithms, such as RT-LoRa and LoRa+. This
reduction in PER is attributed to the dynamic

optimization of scheduling and resource allocation
performed by the RL-based approach, which effectively
mitigates packet collisions and transmission errors.

3. Implications for Network Reliability: A lower PER is
essential for ensuring reliable communication in IoT
applications, as it directly impacts overall network
performance and efficiency. The results presented in
this figure underscore the importance of employing
advanced scheduling algorithms to enhance network
reliability and minimize transmission errors,
particularly in high-node-density scenarios.

Overall, Fig. 7 highlights the correlation between node
density and packet error rates, demonstrating the
effectiveness of the proposed RL-based algorithm in
reducing errors in congested networks.

Fig. 7 Packet Error Rate (PER) vs Number of Nodes
I. Throughput

Fig. 8 illustrates the relationship between throughput and
the number of nodes in a LoRaWAN network. The figure
shows that as the number of nodes increases, the RL-based
algorithm (DQN) achieves significantly higher throughput
compared to other algorithms, such as RT-LoRa and
LoRa+.

This superior performance is attributed to the RL-based
algorithm’s dynamic optimization of scheduling decisions,
which effectively balances network load and minimizes
collisions, resulting in enhanced data transmission rates
even as node density increases.

41 AJIST Vol.15 No.1 January-June 2025

Reinforcement Learning-Based Task Scheduling for IoT Applications in Long-Range Wide Area Networks

Fig. 8 Throughput vs Number of Nodes

V. CONCLUSION

This section concludes our investigation into developing a
reinforcement learning-based, QoS-aware task scheduling
algorithm for LoRaWAN IoT applications. Researchers
examined the limitations of existing scheduling techniques
in meeting the diverse QoS requirements of modern IoT
applications, particularly in dynamic and large-scale
LoRaWAN networks. To address these challenges, we
designed and evaluated a reinforcement learning-based task
scheduling algorithm aimed at optimizing key QoS metrics,
including throughput, latency, and reliability. Our study
demonstrated the significant potential of reinforcement
learning in enhancing task scheduling for LoRaWAN
networks. We conducted a comprehensive simulation-based
analysis using NS-3 to compare the performance of our RL-
based scheduler against baseline techniques, such as RT-
LoRa and LoRa+. The results consistently showed that the
RL-based approach outperformed baseline algorithms,
particularly in dynamic traffic scenarios. Specifically,
during periods of high network traffic, the RL scheduler
effectively adapted, achieving a significantly reduced
average delay. Additionally, compared to baseline methods,
our RL scheduler consistently exhibited lower packet error
rates and higher packet delivery ratios, indicating improved
reliability. Furthermore, the RL-based method achieved
higher average throughput, demonstrating its efficiency in
managing heavy network loads and optimizing data
transmission rates.

Our findings confirm that reinforcement learning can
effectively address the challenges of existing LoRaWAN
scheduling techniques, particularly in meeting QoS
requirements such as throughput, latency, and reliability.
For real-world LoRaWAN deployments, the ability of an
RL-based scheduler to learn and adapt to dynamic network
conditions, traffic patterns, and device characteristics is
crucial for optimizing QoS. This study provides a strong
foundation for the development of intelligent scheduling
systems for LoRaWAN networks across various sectors.

The optimized scheduling approach has the potential to
enhance the performance of numerous applications,
including industrial automation, smart cities, and remote
healthcare monitoring.

VI. PROSPECTS FOR FURTHER RESEARCH

Although our study provides valuable insights into the
potential of reinforcement learning (RL) for LoRaWAN
scheduling, several aspects require further investigation and
development:
1. Exploring Alternative RL Approaches: Further

improvements in scheduling performance may be
achieved by evaluating additional reinforcement
learning algorithms, such as deep reinforcement
learning architectures, policy gradient methods, or other
advanced techniques.

2. Addressing Security and Privacy Concerns: Ensuring
the security and privacy of IoT applications in
LoRaWAN scheduling is essential. Future research can
explore methods for integrating security measures into
the RL-based algorithm.

3. Real-World Validation: Extensive testing and
evaluation in realistic environments are necessary for
the real-world implementation of the proposed
scheduler. Future studies should assess its performance
under varying network dynamics, communication
latencies, and device heterogeneity.

Declaration of Conflicting Interests
The authors declare no potential conflicts of interest with respect to the
research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship,
and/or publication of this article.

Use of Artificial Intelligence (AI)-Assisted Technology for Manuscript
Preparation
The authors confirm that no AI-assisted technologies were used in the
preparation or writing of the manuscript, and no images were altered using
AI.

42AJIST Vol.15 No.1 January-June 2025

Ermias Melku Tadesse, Haimanot Edmealem, Tesfaye Belay and Abubeker Girma

REFERENCES

[1] Mahmood, N. H., Marchenko, N., Gidlund, M., & Popovski, P.
(2020). Wireless networks and industrial IoT: Applications,
challenges and enablers. Springer. https://doi.org/10.1007/978-3-
030-51473-0

[2] de Oliveira, L. R., de Moraes, P., Neto, L. P. S., & da Conceição, A.
F. (2020). Review of LoRaWAN applications. arXiv preprint.
http://arxiv.org/abs/2004.05871

[3] Marais, J. M., Malekian, R., & Abu-Mahfouz, A. M. (2017). LoRa
and LoRaWAN testbeds: A review. IEEE AFRICON 2017, 1496–
1501. https://doi.org/10.1109/AFRCON.2017.8095703

[4] Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2018). Overview of
cellular LPWAN technologies for IoT deployment: Sigfox,
LoRaWAN, and NB-IoT. 2018 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom
Workshops), 197–202. https://doi.org/10.1109/PERCOMW.2018.848
0255

[5] Bouguera, T., Diouris, J. F., Chaillout, J. J., Jaouadi, R., & Andrieux,
G. (2018). Energy consumption model for sensor nodes based on
LoRa and LoRaWAN. Sensors, 18(7), 1–23.
https://doi.org/10.3390/s18072104

[6] Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A study
of LoRa: Long range & low power networks for the Internet of
Things. Sensors, 16(9), 1–18. https://doi.org/10.3390/s16091466

[7] Ragnoli, M., Barile, G., Leoni, A., Ferri, G., & Stornelli, V. (2020).
An autonomous low-power LoRa-based flood-monitoring system.
Journal of Low Power Electronics and Applications, 10(2), 1–15.
https://doi.org/10.3390/jlpea10020015

[8] Haxhibeqiri, J., Moerman, I., & Hoebeke, J. (2019). Low overhead
scheduling of LoRa transmissions for improved scalability. IEEE
Internet of Things Journal, 6(2), 3097–3109. https://doi.org/10.1109/
JIOT.2018.2878942

[9] Sutton, R. S., & Barto, A. G. (2012). Reinforcement learning: An
introduction (2nd ed.). MIT Press. http://incompleteideas.net/
sutton/book/the-book.html

[10] Petäjäjärvi, J., Mikhaylov, K., Pettissalo, M., Janhunen, J., & Iinatti,
J. (2017). Performance of a low-power wide-area network based on
LoRa technology: Doppler robustness, scalability, and coverage.
International Journal of Distributed Sensor Networks, 13(3), 1–14.
https://doi.org/10.1177/1550147717699412

[11] Polonelli, T., Brunelli, D., Marzocchi, A., & Benini, L. (2019).
Slotted ALOHA on LoRaWAN: Design, analysis, and deployment.
Sensors, 19(4), 1–15. https://doi.org/10.3390/s19040838

[12] Alenezi, M., Chai, K. K., Alam, A. S., Chen, Y., & Jimaa, S. (2020).
Unsupervised learning clustering and dynamic transmission
scheduling for efficient dense LoRaWAN networks. IEEE Access, 8,
191495–191509. https://doi.org/10.1109/ACCESS.2020.3031974

[13] Leonardi, L., Battaglia, F., & Lo Bello, L. (2019). RT-LoRa: A
medium access strategy to support real-time flows over LoRa-based
networks for industrial IoT applications. IEEE Internet of Things
Journal, 6(6), 10812–10823. https://doi.org/10.1109/JIOT.2019.
2942776

[14] Sallum, E., Pereira, N., Alves, M., & Santos, M. (2020). Improving
quality-of-service in LoRa low-power wide-area networks through
optimized radio resource management. Journal of Sensor and
Actuator Networks, 9(1), 1–26. https://doi.org/10.3390/jsan9010010

[15] Micheletto, M., Zabala, P., Ochoa, S. F., Meseguer, R., & Santos, R.
(2023). Determining real-time communication feasibility in IoT
systems supported by LoRaWAN. Sensors, 23(9), 1–27.
https://doi.org/10.3390/s23094281

[16] Garrido-Hidalgo, C., et al. (2021). LoRaWAN scheduling: From
concept to implementation. IEEE Internet of Things Journal, 8(16),
12919–12933. https://doi.org/10.1109/JIOT.2021.3064430

[17] Siddiqi, U. F., Sait, S. M., & Uysal, M. (2020). Deep reinforcement-
based power allocation for the max-min optimization in non-
orthogonal multiple access. IEEE Access, 8, 211235–211247.
https://doi.org/10.1109/ACCESS.2020.3038923.

43 AJIST Vol.15 No.1 January-June 2025

Reinforcement Learning-Based Task Scheduling for IoT Applications in Long-Range Wide Area Networks

